

Nearby Stars Lesson Plan

Time: 50 minutes

Goals: To gain an understanding of the distance to nearby stars and the methods used to calculate distance.

Objectives: Students will:

- Watch the "Nearby Stars" segment of the "How far away is it" video book
- Optionally, if there is access to the internet, build the Hipparcos Star Globe
- Calculate a star's luminosity
- Take a short quiz

Materials:

• Internet connection with a computer for viewing "Nearby Stars" segment on YouTube

Directions:

- Introduce the Nearby Stars segment as our first step out of the Solar System. Point out that we'll be enhancing the parallax rung on our distance ladder with a version called 'stellar parallax'.
- Show the video.
- Review what they saw:
 - How the first stellar parallax was done.
 - How a star's proper motion is measured.
 - What a debris ring around a star looks like.
 - How to calculate a star's luminosity via the inverse square law.
 - The amazing power of the Sun.
 - How we get outside the Earth's atmosphere to measure parallax.
 - How we calculate the mass of a star.
- Print the Hipparcos Star Globe.
 - With a computer connection: Using Internet Explorer, go to the Hipparcos website: <u>http://sci.esa.int/hipparcos</u>.
 - Click on 'Hipparcos science home page' on the left side of the screen.
 - Click on 'The Hipparcos Star Globe' on the right side of the screen.
 - Right click on the 'Star Globe Images' and 'Folding Instructions (Star Globe) to download these two files.
 - Print, cut, fold and glue the Hipparcos star map as called for in the instructions.

Assessment options: Here are two assessment options based on prerequisites:

- 1. Without Geometry: Take a simple quiz. Print and distribute the quiz on page 3. Here are the answers:
 - What are the two factors that determine a star's apparent luminosity? <u>Answer</u>: a) intrinsic luminosity, and c) distance.
 - What is the name for the motion of stars across the sky over time? Answer: b) Proper Motion
 - What kind of star systems enabled us to calculate star mass? <u>Answer</u>: a) Binary star systems
- 2. With Geometry: Using the inverse square law calculate the intrinsic luminosity for the following star:
 - The distance to the star is 25 light years = $25 \times 94.6 \times 10^{15}$ meters
 - The apparent luminosity of the star here on Earth is 21.8 x 10^{-11} watts/meter²
 - Solution:

$$\begin{split} L_{appaent} &= L_{intrinsic} / 4\pi r^2 \\ L_{intrinsic} &= 4\pi r^2 L_{apparent} \\ &= 4 \ge 3.14 \ge (25 \ge 94.6 \ge 10^{15} \text{meter})^2 \ge 21.8 \ge 10^{-11} \text{ watts}/\text{m}^2 \\ &= 1.54 \ge 10^{28} \text{ watts} \end{split}$$

Note that this is 40 times the luminosity of the Sun. This is the star Vega.

This exercise is repeated without the solution on page 4.

Nearby Stars quiz

- What are the two factors that determine a star's apparent luminosity?
 - a) Intrinsic luminosity
 - b) Proper motion
 - c) Distance
 - d) Rotational velocity
- What is the name for the motion of stars across the sky over time?
 - a) Doppler shift
 - b) Proper motion
 - c) Radial motion
 - d) Rotational motion
- What kind of star systems enabled us to calculate star mass?
 - a) Binary star systems
 - b) Open star clusters
 - c) Globular star clusters
 - d) Nearby star systems

Nearby Stars Exercise

Using the inverse square law, calculate the intrinsic luminosity for the following star:

- The distance to the star is 25 light years = $25 \times 94.6 \times 10^{15}$ meters
- The apparent luminosity of the star here on Earth is 21.8 x 10⁻¹¹ watts/meter²

The luminosity of the Sun is 3.84 x 10^{26} watts. How many times more luminous than the Sun is this star?