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General Relativity I - Geometry 
 

{Abstract: In this segment of the “How Fast Is It” video book, we cover the geometry of general relativity. We start 
with the Elevator Thought Experiment, and show how it represents a gravitational field and how it predicts the 
bending of light. This sets the stage for the Equivalence Principle. This leads to the reconciliation of Newton’s two 
definitions for mass. Which, in turn, leads to the idea that the existence of a mass bends space. To understand the 
bending of space, we cover the basics of Euclidian and non-Euclidian Riemann geometry. We include spherical and 
hyperbolic geometries along with the nature of their respective geodesics. We actually measure geodesic deviation above 
the Earth. For a fuller understanding, we cover the definition of metrics and curvature in terms of tensors. With the 
general Riemannian Curvature Tensor in hand, we find the subsets that reflect the behavior of space within a volume. 
We then cover how Einstein mapped this geometry to space-time to produce the Einstein Curvature Tensor. And 
finally, we describe the Energy-Momentum tensor that identifies the nature of a volume of matter-energy, which is the 
source of the space-time curvature. Setting these equal to each other with an appropriate conversion factor gives us 
Einstein’s general relativity field equations. } 

 
 

 

Introduction 

[Music: Stravinsky - Apollon Musagete, Scene 2 Apotheose - Apollo, Leader of 
the Muses) is a ballet composed between 1927 and 1928.]  

 

  

 

We’re zooming into the center of the Sculptor 
void. It’s the largest void in the nearby 
Universe. This will take us to a place with as 
little gravity as we can find.

 

Now imagine that you’re in an elevator at the center of this great 
void. You’re not accelerating. You’re weightless in an inertial 
frame – stuck to the bottom with Velcro boots. You’re holding 
a ball. If you let go, it would float in place. 
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Now imagine that the elevator starts accelerating at a constant 
velocity. You will now feel a force pulling you down.  

 

 

Let go of the ball again. This time it falls to your feet. No matter 
where you let go of the ball, it will feel the same force and fall to 
the bottom of the elevator.  

 

 

In other words, at every point in space inside 
the elevator, a force is felt. This is a force 
field. The elevator’s acceleration has created a 
force field inside the elevator. The 
acceleration of the ball follows Newton’s 2nd 
law of motion - Force = mass x acceleration.

 

Now turn off the engines to return to an inertial frame. You’re 
not accelerating. It’s dark. You turn on a flashlight and watch 
the light reflect off the far elevator wall. 

 

 

Start the elevator accelerating again at a constant rate.  

 

 

Turn on your flashlight and watch the light beam hit the far wall 
further down than it did when you were at rest. The light bends 
down!  
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Now let’s take a look at what a person outside the elevator 
looking in would see when we drop a ball and shine a light. The 
person outside the elevator is not accelerating. When the person 
in the accelerating elevator lets go of the ball, the person outside 
the elevator sees that it sill hovers in place, just as before. He 
sees that the elevator moved up to hit the ball. There is no force 
acting on the ball. There is no force field inside the elevator. 

 

 

And when the person in the elevator turns on the flashlight, the 
person outside the elevator sees the light travel in a straight line 
as before. He sees that it’s the elevator’s wall moving up that 
causes the light to hit it at a lower point. The light does not 
bend. 

 

 

Who is right?   Before Einstein’s GTR, we 
would have said the inertial observer was 
correct and the person in the elevator was 
fooled into thinking he is in a gravitational 
field. But according to GR, they are both right 
in their own reference frame. Gravitational 
forces have materialized for the person in the 
elevator due to its accelerated motion.

 

 

According to GR, this gravitational field is as real as one created by the existence of a massive 
object.

 

 
 

To see this, let’s compare what the person in 
the elevator is experiencing and what a person 
at rest in a gravitational field would 
experience. We know that Earth’s gravity near 
the surface accelerates objects at 9.8 m/s2. If 
we set the acceleration of the elevator at 9.8 
m/s2, the occupant would experience the 
weight he feels on Earth, and the ball would 
fall at the same rate as it does on Earth.
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Equivalence Principle 

[Music: Dvorak - Songs My Mother Taught Me from Gypsy Melodie - Written 
in 1880.]  

In fact, the person in the elevator cannot tell the difference between the two situations. Is he out in 
space being accelerated by some force or is he at rest on Earth being accelerated by Earth’s gravity? 
As far as the laws of physics are concerned, being accelerated and sitting still in a uniform 
gravitational field are equivalent. This is Einstein’s Equivalence Principle. It is a generalization of SR 
that holds that the laws of physics were the same for all inertial reference frames. With GR we hold 
that the laws of physics are the same for all reference frames no matter what their relative motion. 

 
 

The equivalence principle has a number of implications. One of the most significant for us is that it 
tells us that because light bends in the elevator, it will bend in a matter generated gravitational field 
as well.  

You’ll recall from our segment on Special relativity, that light speed in a vacuum being a constant 
lead directly to time dilation, space contraction, unusual velocity addition, and the end of 
simultaneity. With GR, we’ll see how the bending of light in a gravitational field has its own set of 
even more dramatic changes to our understanding of the physical world. 

 

 
 

[Music: Giacomo Puccini- O mio Babbino caro ("Oh My Beloved Father") - 
a soprano aria from the opera Giann Schicchi (1918).]  
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Mass 

One of the motivations for the equivalence principle was the long standing problem with Isaac 
Newton’s classical physics when it came to mass. Newton defined two kinds:  

• Inertial mass was defined by how 
much force it took to accelerate an 
object. It is described by the Force 
equals mass times acceleration 
formula. 

 

• Gravitational mass was defined by 
how strong an attractive force it 
exerted on other objects. It is 
described by Newton’s universal 
gravitation formula. These are two 
very different definitions for mass. 

 

 

 

But, ever since Galileo’s experiments with 
falling objects, we have known that masses do 
accelerate at the same rate no matter how 
massive they are.  

 

 

That objects with different inertial masses fall 
at the same speed in a gravitational field can 
only happen if the inertial mass and the 
gravitational mass for any object are equal. 
Measurements to this day show that these two 
kinds of mass are indeed equal. The data lead 
Newton to declare them equal, but he could 
not explain why they were equal. 

 

 

Einstein felt that before you can declare two things equal, you need to demonstrate an equality in the 
real nature of the two concepts. In other words, we can only say they’re equal after their real nature 
is found to be equal. 
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His equivalence principle does just that. Acceleration and gravitation are the same, and therefore the 
mass associated with acceleration and the mass associated with gravitation will naturally be the same 
as well. Problem solved. But a new set of non-intuitive consequences followed. 

 
 

Early Considerations 

From antiquity into the eighteenth century, it was believed that the idea of empty space is a 
conceptual impossibility.  

Space is nothing but an abstraction we use to compare different 
arrangements of the objects. Concerning time, it was believed 
that there can be no lapse of time without change occurring 
somewhere. Time is merely a measure of cycles of change 
within the world.  

 

Then, in 1686, Isaac Newton founded classical mechanics on the view that space is real and distinct 
from objects and that time is real and passes uniformly without regard to whether anything moves in 
the world. 

 

 

He spoke of absolute space and absolute time as a 
stage within which matter existed and moved 
as time flowed at a constant rate. It was 
understood that space and time tell matter 
how to move, but matter has no effect on 
space and time.

 
 

 

We have seen that SR broke the paradigm of 
absolute space and absolute time, because the 
constancy of the speed of light required a 
tradeoff between space and time across 
different inertial frames. In addition, and 
more to our point, the idea that space and 
time act on matter, but that matter does not 
act on space and time, troubled Einstein.
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With these considerations in mind, and noting that light curved in a gravitational field, Einstein 
proposed that the mass of an object does indeed act on the space and time it exists in. Specifically, 
he proposed that the presence of matter curves space-time.  

 

 
 

To see how this can be, we need to examine the geometry of space a little closer. We’ll start with the 
Euclidean geometry of flat surfaces and generalize it to curved space-time. 

 

[Music: Debussy - Prelude to the Afternoon of a Faun - a symphonic poem. It 
was first performed in Paris in 1894.]  

 

 

Euclidian Geometry 

Euclid lived in the Greek city of Alexandria in 
Egypt around 2,300 years ago. He spent his 
life studying and teaching geometry. He 
published his ideas in a book called 
“Elements”.  To this day, it is the foundation 
for our understanding of geometry and 
mathematical processes in general. 

 
Oxyrhynchus papyrus showing fragment of 
Euclid's Elements, AD 75-125 (estimated)

 
In the early to mid-1800s, new geometries 
were studied by mathematicians like Johann 
Carl Friedrich Gauss (one of the greatest 
mathematicians of all time) and his 
colleague Georg Friedrich Bernhard Riemann. 
We’ll cover a bit of what they found. 
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To understand the differences between 
Euclidian geometry and other possibilities we 
start with points and connect them with lines. 
The shortest distance between two points is 
the line with the least curves. In Euclidian 
geometry, this is a straight line. In this case, 
the least curvature is no curvature at all. 
Another name for the shortest line between 
two points is the geodesic.

 
If we draw geodesics that are each 
perpendicular to a third line, they will 
be parallel to each other. They will 
never cross, even if they are extended 
to infinity. This is a key characteristic 
of flat Euclidean space. 

 

                

 
What we are talking about here is the intrinsic characteristics of the geometry. Things like the sum of 
the angles of a triangle is 180 degrees and the circumference of a circle is 2 π times its radius. We can 
bend this 2 dimensional surface into a third dimension and give it the look of curved space. 

 
But this curvature is extrinsic by nature. The 
intrinsic geometry is still flat: parallel lines 
remain parallel; the sum of the angles of a 
triangle is still 180 degrees; and the 
circumference of a circle is still 2 π times its 
radius. 
 
But there are other possibilities. One possibility for a different geometry supposes that the parallel 
geodesic lines are diverging - getting further apart.  
 
It’s as if space was being stretched between 
the lines. And the further up the lines you go, 
the more the space is stretched. Here the sum 
of the angles of a triangle is less than 180 
degrees and the circumference of a circle is 
more than 2 π times its radius.  
   

 
This is hyperbolic geometry. It represents 
space with a negative curvature. The best 
example of this is the surface of a saddle or a 
potato chip. 
 
Another possibility for a different geometry supposes that the parallel geodesic lines are converging 
and will eventually meet.  
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It’s as if space was being compressed between 
the lines. And the further up the lines you go, 
the more the space is compressed. Here the 
sum of the angles of a triangle is greater than 
180 degrees and the circumference of a circle 
is less than 2 π times its radius. This is 
spherical geometry. It represents space with a 
positive curvature.  

 

 

 

 

The best example of this is the surface of a sphere like the Earth 
itself. Here the curvature is constant throughout the surface. 
The base line is the equator. The perpendicular lines are the 
lines of longitude, and they meet at the North Pole.

 
Here’s the best way to find the geodesic between two points on 
a sphere. First intersect the sphere with a plan that contains the 
two points plus the center of the sphere. The intersection is 
called a Great Circle. The segment of the circle that connects 
the two points is the shortest distance between the two points.  
 

 
 
 
 
 
A parallel of latitude line between the two points would be 
longer. 
 

 
This is why planes in the northern hemisphere travel north and 
then back south to get to a destination at the same latitude 
rather than travel due east or west. They have chosen the 
shortest distance between the two points to save on both time 
and fuel. Some geodesic routs can save up to a thousand 
kilometers.  
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Of course, when it comes to a more generalized curved space, 
the curvature changes from place to place. If we were to put a 
car on a curved surface like this one, and lock its steering wheel 
to go straight, it would naturally follow the space’s geodesic line 
from its starting point. When it’s done, it will have traveled the 
shortest distance between its starting point and its ending point.

 
 

 
Measuring Geodesic Deviation 
 
Above the Earth we can measure geodesics 
and their deviation using test particles. For 
example, if we place three test particles 
vertically above the Earth’s atmosphere, and 
separate them by a small amount, we can see 
what happens when they all fall freely along 
their geodesic lines towards the center of the 
Earth.  

 

 
 
Because the particles closer to the Earth will 
feel a slightly stronger gravitational attraction 
than the particles further up, they will 
accelerate faster. The distance between them 
will increase. This shows that the curvature is 
negative along this line in space above us. 
 

 
 
If we place the three test particles horizontally 
along an east-west line with the same starting 
separation, we can see what happens when 
they all fall freely along their geodesic lines 
towards the center of the Earth.  

 
Because the particles are moving to the same 
point, the distance between them will 
decrease. This shows that the curvature is 
positive along this line in space above us. The 
same would be true for the same reason if we 
started with a horizontal north-south line. 
 
Interestingly, if we sum the three curvatures for the three special dimensions, we get a total 
curvature of zero! 
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Tensors 

 

We see that at any point in n dimensional 
space, there are n independent directions, and 
each line through a point can have a different 
curvature. Here we picture just two. In one 
direction we have a positive curvature. In 
another it is negative.

We can also construct a surface for each 
dimension. Each surface has a size and an 
orientation. We use vectors to mathematically 
represent the size and orientation of surfaces. 

And for each surface, we can construct a 
vector that represents the curvature of the 
lines through a point on the surface.  

 

 

Multiplying these two of vectors creates a 
mathematical object called a tensor. 

 

 

The power of tensors lies in two basic characteristics: first, they 
carry a great deal of information. And second they are invariant 
when the coordinate systems are changed. In other words, they 
remain constant across all kinds of changes in how we’re 
looking at any particular situation.

 

 

Riemannian geometry 

Riemann developed the mathematics for this generalized space with any number of dimensions. 
Basically it is a three step process.  

• First we define a metric for the space that allows us to measure distances.  
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• Second, we use the distance metric to find the geodesics for the space. 

• And third, we use the geodesics to define what we mean by curvature. 

 
These spaces are smooth. By that I mean there are no abrupt 
changes. Given that, we can always zoom into a curved space to 
the point that the small piece we are looking at is flat. And in 
flat space, distance between any two points is defined by the 
Pythagorean Theorem.   

 

 

We then generalize by adding coefficients to take into 
consideration the different scales for lines in different directions 
and the fact that the lines no longer cross to form right angles. 
This is called a metric tensor.  

 

And finally, we extend the number of dimensions and generalize 
to coefficients to be functions of location to take into account 
curved and changing coordinate systems. This generalized 
metric tensor is the foundation for non-Euclidian geometry, its 
geodesics, and its curvature at any point. 

 

[Music: Robert Schumann - Traumerai (Dreaming) - Written in 1838, it was 
featured in the 1947movie “A Song of Love”.]  

 

Geodesics 

With the metric tensor, we can 
measure distances between any two 
points by adding up all the small 
distances along the way. 
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Taking the formula and finding its 
minimum is an exercise in calculus 
that gives us the shortest distances. 
These are the geodesic lines. 

 

 

Curvature 

Now that we have a way to measure distance and find geodesics, we can determine a space’s 
curvature. Riemann used a concept called parallel vector transport.  

 

Picture moving a vector around a triangle in flat space in such a 
way that it remains parallel to the starting vector. By the time we 
get back to the start, we have the exact same vector as we 
started with.   

   

 

Now repeat this same exercise on a curved surface like the 
surface of the earth. Start at the equator and point the vector in 
front of you facing north.  

 

Move north along the geodesic longitude line. When you reach 
the North Pole, turn 90 degrees to your right. To keep the 
vector pointing in the same direction, it is now pointing to your 
left 90 degrees.  

 
 

Move south along the geodesic longitude line 
to the equator and turn right 90 degrees again. 
The vector must now be made to point to 
your rear in order to keep it parallel to the 
original direction.  
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Now walk west along the equatorial geodesic 
until you reach your starting point. Clearly, the 
vector is no longer the same as when you 
started. The difference is the measure of the 
curvature of the space you travelled.   

                
 
Riemann developed the tensor that precisely measures how much the components of a vector 
change when it is parallel transported along a small closed curve. This is called the Riemann 
curvature tensor. 

  
 

A subset of this tensor was developed by a mathematician named Gregorio Ricci-Curbastro called 
the Ricci tensor that compares the volume of space for a given Riemannian curvature to the volume 
of space in Euclidian geometry.  Where Riemann gives us the curvature for every geodesic, Ricci 
gives us an average for a volume. Averaging this, we get a volume scalar. With this we can calculate 
the amount by which the volume deviates from what it would be in Euclidean space. 

 
[Music: Ron Grainer - The Doctor Who Themes - Created in 1963, it was one 
of the first electronic music signature tunes for television.]  

 

 
• For example, in Euclidian flat 

space, a cuboid’s volume is a times 
b times c.  The yellow lines 
represent geodesics inside the box. 
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• The volume is less than this, if the 

Ricci curvature of the interior 
region is positive. In other words, 
it’s smaller on the inside. 

 

 
 

• The volume is more than this, if 
the Ricci curvature of the interior 
region is negative. In other words, 
it’s larger on the inside. 

 

 
 

GR Field Equations 
 

[Music: John Williams - Across the Stars (Love Theme from Star Wars Episode II).]  
 

The Einstein Tensor 

The Equivalence Principle led Einstein to the position that the presence of matter curved space-
time, and that a body - free from all forces - travels geodesics in this curved space. With Riemannian 
geometry and the Ricci tensor, he had what he needed to develop the curvature side of the equation.  

First, we fix the generalized n-dimensional coordinates to our four space-time coordinates. The 
convention is for numbers to run from 0 to 3, with 0 being the index for the time component. 

     
 

Then we find the volume of the 3 spatial 
dimensions for a given time dimension. This 
is the Einstein tensor.  
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Physically, this tensor determines how the volume of a small 
group of particles in free fall along geodesics will change. [It is 
built from the Riemannian curvature tensor that quantifies 
curvature, but it is not actually a measure of curvature itself.] 
Our little seven particle experiment helps illustrate this 
important fact.

Here we see the change in the volume as the 
particles diverge and converge along various 
geodesics. This changes the shape of the 
volume from a sphere to an ellipsoid but the 
total volume remained unchanged. The 
Einstein tensor is zero even as the curvature 
of the space is not zero. 
 
 

 

 
 
By the way, this sphere to ellipsoid phenomenon is called a tidal 
effect, because it is how our moon creates tides on the Earth.

 

 

Energy-Momentum Tensor 

In Newtonian physics, the force of gravity 
was created by mass, or more precisely, mass 
density – the amount of mass per unit 
volume.  

In GR, we need to change this from mass 
density to energy density, because of the 
equivalence between mass and energy and to 
take into account the motion or kinetic energy 
of the masses.  
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So in addition to calculating the mass-energy 
density of a volume of space, we need to 
account for the flow of energy through each 
surface of the volume.   

 
This information can be packed into a 4x4 matrix known as the Energy-Momentum Tensor [or 
Stress-Energy Tensor]. Each element represents the flow of momentum across a surface.  
 

 

The first component represents classical energy density at a constant time. This was the only 
component used in Newton’s equations.  

 

Similarly, the rest of the top row and left column is the energy flow across each surface. 
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The rest are momentum flows across surfaces. For example, T12 keeps track of the flow in the x 
direction of momentum in the y direction3. These are caused by pressure and stresses at each 
surface. 

 

The final step for the gravitational field equations is to determine the constant of proportionality 
between the Einstein tensor that encapsulates curvature volume and the energy-momentum tensor 
that encapsulates the total energy density. We use the boundary condition that the equations must 
produce Newton’s equations for spaces with very little curvature. With that, the constant becomes 8 
π times Newton’s gravitational constant divided by the speed of light raised to the fourth power.  

 
 
This looks simple enough, but because they’re tensors, it represents 40 equations with 40 unknowns.  
 

 
 
These are the Einstein Field equations for GR. We’ll go over what they predict for gravitational 
phenomena near the Earth, near the Sun and around a Black Hole in our next segment. 
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