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How Far Mathematical Foundations – Direct Measurement 
 

 
{Abstract – A significant amount of mathematics is used in the How Far Away Is It channel video books. 
Although mathematical equations are identified, they were not the focus. They served to deepen understanding of the 
physical observations. In this video book, we will begin from first principles and develop the foundation for the math 
used. But the focus will not be on proofs and notation, but rather on the principles and postulates and key theorems.  
 
In order to better understand ‘direct measurement’, we’ll develop the real number system from counting numbers. We’ll 
add zero and then negative numbers to get the integer number line. At that point, we introduce the basic mathematical 
operations of addition, subtraction, multiplication and division. With these we use Peano’s Postulates to identify the 
associative, commutative and distributive properties of whole numbers.  
 
We then extend the integer number line to the rational number line and illustrate the Trichotomy property. We then 
cover irrational numbers – going back to the ancient Greek philosopher Hippassus – including his proof published by 
Euclid. Combining sets, we’ll construct the dense and continuous real number line, and identify the problems with 
irrational numbers that persisted until the late 1800s when Richard Dedekind developed his real number line cuts.  
And finally, the real number line is then used as the bases for direct measurement where we will identify a key 
difference between Math and Physics.  
 
Along the way, we’ll see: the Bakhshali manuscript where we see the first use of zero; the earliest written reference to 
negative numbers in the Chinese book “The Nine Chapters on the Mathematical Art”; an algebraic exercise that 
purports to show that the number one equals the number two; some key issues with the number zero, division and 
exponents; and a way to multiply by doubling and halving. 
 
This real number line will be the bases for all subsequent mathematical analysis. I trust you’ll find it informative and 
entertaining.} 
 
 
 
 
Introduction 
One of the defining characteristics of the “How Far Away Is It” science videos is the limited 
use of mathematics to shed light on key scientific findings. By limited, I mean the videos 
focus on the scientific finding much more than the mathematics. But I believe that a deeper 
understanding of the mathematics could provide for a deeper understanding of the 
associated scientific conclusions. 
In this video book, we’ll cover the math presented in the “How far”, “How small”, “How 
fast”, and “How old” video books. We won’t cover all of mathematics, but rather focus on 
those aspects that clarify the science. 
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Counting Numbers 
Our first use of mathematics in “How Far 
Away Is It” was the direct measurement 
of the distance between where I was 
standing and a pillar in my backyard. The 
mathematical foundations for this go to 
the ‘number line’ which is based on our 
concept of numbers. So we’ll start with 
the Number System. 
 
 
In the beginning across all ancient 
cultures, there were natural numbers or 
counting numbers. Like eggs in a basket, 
we can have one, or one more than that 
would be two, or one more than that 
would be three, etc.  

The beauty of mathematics is that it is so versatile. It can not only be used to count eggs, it 
can count money, or stars in our galaxy, or even galaxies within a range of redshifts to 
determine whether the universe is flat or not. 
 

 
 
The counting numbers did not include the 
number zero. You cannot count zero. Its 
origins date back to a famous ancient 
Indian scroll, called the Bakhshali 
manuscript created 1,600 to 1, 700 years 
ago. Back then, it was written as a dot 
used as a place holder for numbers larger 
than 9. If we add the number zero to our 
set of counting numbers we get the set of 
whole numbers. 
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There are multiple sets of symbols for 
these numbers. The most familiar are the 
Roman Numerals, the 10 repeating 
positional Hindu-Arabic numerals and the 
2 repeating positional computer digits. 
The Hindu-Arabic numerals are by far the 
most versatile and replaced Roman 
Numerals when the Roman Empire fell 
around 300 C.E. 
 
 
The Missing Digit 
The Hindu-Arabic number system has some interesting properties. Here’s one of them.  
 
Multiply 9 times any number, say 
983,264. Pick one of the digits in the 
product. We’ll pick the 7.  

 
Now add up the remaining digits. If the 
answer has more than one digit, add 
them. Repeat the process until you get a 
single digit.  

Subtract that digit from 9 and you get the 
number you picked out of the original 
product. This will work no matter which 
digit you choose to remove from the 
product. 

It’s the base 10 system that makes this work. For example, we can write the number abc,def 
as the sum of its positional digits. 

 
With this view, we can see that the numbers 2, 5 and 10 divide evenly into each of the terms 
except possibly the last digit - f.  

 
This is why, if the last digit is even, the whole number is even; if the last digit is odd, the whole 
number is odd; if the last digit is divisible by 5, then the whole number is divisible by 5; and 
if the last digit is 0, the whole number is divisible by 10. 
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Moving on a bit we can rewrite this number by breaking up the powers of ten subtracting 1 
and adding 1 to each of them. 

 
Multiplying each digit through its sum 

 
And rearranging we get this: 

 
Every number in the first bracket is 
divisible by 9. So if the sum of the digits in 
the second bracket is also divisible by 9, 
the whole number is divisible by 9. In 
other words, it’s sufficient. Furthermore, if 
the sum in the second bracket is not 
divisible by 9, then the whole number is 
not divisible by 9. In other words it’s 
necessary. By the way, the same thing is 
true for 3 as well.  
So, in our ‘missing digit’ exercise, we 
multiplied a number by 9 guarantying that 
the sum of the product’s digits would add 
up to 9. Now pulling out any digit will 

reduce the remaining sum by just that 
amount. So subtracting it from 9 gives you 
the removed digit.  

 
This system is easily extended into the decimal number system by dividing by ten for each 
positon to the right of the decimal point in much the same way we multiplied by ten for 
position to the left. We write abc.efg as this: 

a(100) + b(10) + c(1)  .  e(1/10) + f(1/100) + g(1/1000) 

For example 0.75 is 7/10 + 5/100 = 70/100 + 5/100 = 75/100 = 3/4 
Negative Numbers 
If we include negative numbers along with positive numbers and zero, we get the full set of 
Integers. 
 
But it took a long time to fully accept the 
very concept of negative numbers. The 
ancient Greeks did not have negative 
numbers. The earliest written reference 
to negative numbers was found in the 
Chinese book “The Nine Chapters on the 
Mathematical Art” written around 100 
B.C.E.  
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In fact, negative numbers were not fully 
accepted until the nineteenth century. 
After all, you can’t have less than zero 
eggs in the basket. [In the 17th century 
Blaise Pascal, one of the great 
mathematicians of his time found the 
statement 0 – 4 to be utterly absurd. And 
Descartes found negative solutions to 
equations to be “false” solutions. 

Another mathematician argued against negative numbers by assuming that numbers 
represent quantities. That would have the number 1 representing a larger quantity than 
the number -1. So to say that the ratio of 1 over -1 (a large quantity over a smaller 
quantity) is equal to the ratio of -1 over 1 (a smaller quantity over a larger quantity) is 
absurd. And even Leibniz, who created Calculus at the same time as Newton in the 18th century 
regarded this objection to negative numbers as valid. But he used them none the less.] 
Here’s an illustration that highlights the problem mathematicians had with negative 
numbers. We used this in the “How Fast Is It” video book explaining the theory behind the 
Michelson-Morley experiment.  
 
We have a boat in a river traveling 
upstream with a motor that can drive it at 
a steady speed in still water. The river is 
flowing in the opposite direction. The 
boat’s home base is a known distance 
away. The question is - How long will it 
take the boat to get home?  

 
The solution is pretty straight forward. The time it takes is 
just the distance it has to travel divided by the speed it is 
traveling. And that speed would be its velocity minus the 
velocity of the river.  

 

t = d/(vb - vr)

If the distance is 30 km, and the boat is running at 20 km/hr, and the current working 
against it is 5 km/hr we see that the trip home will take 2 hours. 

t = 30 km/(20km/hr – 5 km/hr) = 2 hr 
But what if the current is greater than the speed of the boat say 25 km/hr. Then the 
equation gives us negative time. Is time going backwards? Absurd. 

t = 30 km/(20km/hr – 25 km/hr) = -6 hr 
But if we apply the math to the situation that we used to develop the equation, we see that a 
negative time simply means that the poor boat will never make it home. The river will simply 
continue to carry it downstream. 



How Far Mathematical Foundations – Direct Measurement 

                             

6 

 
 
The Number Line 
With the full set of integers, we can now construct the number line in order to use numbers 
to measure distances. We need to associate each number to a point on a line. 
 
To construct a correspondence between 
positive integers and points on a line, we 
begin by marking off equal segments to 
the right of the origin P of a given line. 
 

We associate the number 1 with the right 
endpoint of the first segment. 2 with the 
right endpoint of the second segment, etc. 
This method associates each positive 
integer with a point on the line. The 
number associated with a point on the 
line is called its coordinate. 

 

We then associate the number zero with the origin P, and then extend the line to the left in 
the same sized segments we count off to the right. These points correspond to the negative 
numbers where the leftmost point in the first segment represents -1, the leftmost point in 
the second segment represents -2, and so forth. This is the basic number line for the set of 
all integers. 
 

 
 
In order to indicate that these numbers are carried out to the right and the left without 
limit, we introduce the symbols +∞ and -∞. But we need to keep in mind that these are not 
numbers. 

 
 
 
Basic Arithmetic Operations 
With the set of integers in hand, we can define the four basic arithmetic operations of 
addition, subtraction, multiplication and division.  
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We can define addition as an exercise in 
counting. a + b means start with the 
number specified by the first term ‘a’ and 
count the number specified by the second 
term ‘b’. In this example, we start with ‘a’ 
at 11 and count 7 more for ‘b’. 

 
 

 
Zero is the additive 
identity in that adding 
zero to any number gives 
you the same number 
you started with. 

 
Subtraction would then be start with the 
first term and count backwards the 
number specified by the second term. 
Here we are counting 7 numbers back 
from 11. Thus addition and subtraction 
are tied directly to counting, and counting 
has been shown to accurately represent 
anything that you can count.  

 
 

 
We can also define multiplication in terms 
of addition which in turn is based on 
counting.   ‘a’ times ‘b’ says add the 
number ‘a’ to itself ‘b’ times. Here we are 
starting with 3 and adding it to itself 5 
times. [In the appendix, you’ll find an 
example of multiplication that just uses 
doubling and halving.]  
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Doing it 1 time leaves it 
unchanged. Thus, the 
number 1 is the 
multiplicative identity 
like zero was the additive 
identify.  

 
 
But what does it mean to add a number to 
itself zero times. To deal with that we 
define a number being added to itself zero 
times, to be the number zero. 

 
 
We define division as the inverse of 
multiplication. For the division of one 
number (say ‘a’) by another number (say 
‘b’), we are asking how many times can 
we subtract b from a. Or more generally, 
what number when multiplied by ‘b’ gives 
us ‘a’. For example, in the above 
multiplication we could ask how many 
times can we subtract 3 from 15, and the 
answer is 5. 
In the late 1800s, the mathematician Giuseppe Peano proposed a set of axioms or 
postulates that can be used to develop number properties. In simple terms, starting with 
the counting numbers, they are: 
 

1. 1 is a number 
2. Every number n has one and only one successor number n + 1.  
3. No two different numbers have the same successor number 

• If n + 1 = m +1 then n = m. 
 
From these postulates and our basic operator definitions, a number of properties exist that 
we can use to manipulate numbers and solve equations. Here are the properties for the 
natural or counting numbers. Although we tend to take them for granted, mathematicians 
have to have proven each and every one.  
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Natural Number Properties 

       Let ℕ be the set of Natural Numbers  ℕ = {x| x is a natural number} 

• ℕ is closed with respect to addition   If a ∈ ℕ and b ∈ ℕ, then a + b ∈ ℕ   

• ℕ is not closed with respect to subtraction If a ∈ ℕ and b ∈ ℕ, then a - b may not be in ℕ 

• Zero is the additive identity    a + 0 = a  

• Addition is Associative    (a + b) + c = a + (b + c) 

• Addition is Commutative    a + b = b + a 

• ℕ is closed with respect to Multiplication  If a ∈ ℕ and b ∈ ℕ, then ab ∈ ℕ   

• ℕ is not closed with respect to division If a ∈ ℕ and b ∈ ℕ, then a/b may not be in ℕ 

• One is the multiplicative identity   a x 1 = a  

• Multiplication is Associative    (ab)c = a(bc) 

• Multiplication is Commutative   ab = ba 

• Multiplication is distributive over addition a(b + c) = ab + ac 
 

Natural numbers are closed for addition and multiplication. By closed we mean that these 
operations on numbers in the set produce numbers that are also in the set. When we 
include zero and negative numbers we get the integer number line. The set of integers adds 
closure for subtraction. 
 

Let ℤ be the set of Integers   ℤ = {x| x is an integer} 

• ℤ is closed with respect to subtraction If a ∈ ℤ and b ∈ ℤ, then a - b ∈ ℤ 
 

You’ll find a proof that (a + b) = (b + a) for natural numbers in the appendix. 
 
 
The Rational Number Line 
The set of integers is not closed with respect to division. 1 divided by 2 is not in the set of 
integers. To include these and make the set closed with respect to division, we need to add 
all the rational numbers - the numbers that can be expressed as a ratio of integers where 
the denominator is not zero.  
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To map these numbers to the number 
line, we simply divide each segment into 
the number of subsegments indicated by 
the denominator. For example, here’s 9 
divided by 4.  

 

The line that contains all integers and rational numbers and zero is known as the Rational 
Number Line. It has all the properties of the integer number line and is closed for all the 
basic operations. 

Let ℚ be the set of rational numbers ℚ = {x| x is a rational number} 

• ℚ is closed with respect to division  If a ∈ ℚ and b ∈ ℚ, then a/b ∈ ℚ 
It not only contains all the rational numbers, it provides the ordering. One number is 
greater than another if its coordinate on the line is to the right, it is less than another if its 
coordinate is to the left, and it is equal to the other if its coordinate is the same as the other. 

Trichotomy property 

     
 
With the rational number line in hand, we 
can now define distance on the line. If P 
and Q are rational points on the line with 
coordinates x and y respectively such that 
x ≤ y, then the distance between P and Q 
is (y – x).  [For example, if the coordinate 
for P is 2 and the coordinate for Q is 7, 
then the distance from P to Q is 5.] 

 

It is straight forward to find the midpoint between any two rational points P and Q. We’ll 
call it M with a coordinate equal to t. The distance to t would be the distance to P plus half 
the distance between P and Q. That would be (y – x)/2. We see that the coordinate of the 
midpoint of two points on the number line is half the sum of the given points.  
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Consequently, there is always a rational point between any two rational points on the line. 
Because we can continue to divide by 2 without limit, it follows that there are infinitely 
many rational numbers between any two given rational numbers no matter how close 
together they are. We say the rational number line is dense. [This also means that there is 
no such thing as adjacent points – two points without any other points between them.] 
 

 
 
An important consequence of the set of rational numbers being dense is that the length of 
any segment can be approximated to any degree of accuracy by a rational number. 
 

 
And there is one more important point to make about this line. If we shift the origin, every 
coordinate on the line will change. For example, if we shift it to the right 2 units, the 
coordinates on the new line will be different than the originals by 2 units. But there is one 
thing that does not change when we change the coordinates, and that is the length of any 
line. It is said to be invariant with respect to cardinalate transformations. You can see how 
the shift in the values of the coordinates cancel out in the length calculation. 

 
But before we leave the number line, there are two more considerations we need to 
examine: 1) there are missing points on the rational number line and 2) the number zero 
has some unique important characteristics. 
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Irrational Numbers 
Hippassus born around 500 B.C.E. was a 
Greek philosopher of the Pythagorean 
school of thought. He is widely regarded 
as the first person to recognize that a 
square's diagonal cannot be expressed as 
the ratio of two integers. At this time in 
Greek society, numbers were intimately 
connected to their religion, so Hippassus’ 
finding was considered heresy.  
 
Two hundred years later, Euclid published the proof. Here’s how it goes. First, assume that 
there is such a rational number, and then show a resulting contradiction that negates the 
assumption.   
Suppose p/q is a rational number expressed in its lowest 
terms (meaning they have no common factors except for 
the number 1 such that  

𝒑𝒑
𝒒𝒒

= √𝟐𝟐

 
Squaring both sides of the equation and multiplying both 
sides by q2 we get 

p2 = 2q2

 

This shows that p2 is an even number and therefore, p 
must be an even number because an odd number times 
itself would be an odd number.  
Since p is even there exists a number t such that                                   p = 2t

 
If we substitute this in for p, we get                                                      (2t)2 = 2q2 

                                                                                                                              4t2 = 2q2

If we divide both sides by 2 we get this 2t2 = q2

 

Showing that q is also an even number. In other 
words both p and q have 2 as a factor. 
 
But our stipulation was that they had no factors in common except for the number 1. We 
have a contradiction. And it shows that the statement “The square root of 2 can be 
expressed as a rational number.” is false. Therefore, it cannot be expressed as a rational 
number. 
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In fact, the nth root of any number that isn’t a perfect nth root is irrational.  

�𝟓𝟓  , √𝟒𝟒𝟒𝟒𝟒𝟒
 𝟓𝟓

  ,  √𝟖𝟖𝟖𝟖𝟖𝟖𝟒𝟒𝟔𝟔   ,  … 

Add to that the fact that any irrational times a rational will be irrational and you can see 
that the set of irrational numbers is infinite. That puts a lot of holes in the Rational Number 
Line. The rational number line might be dense, but it is not continuous. 

 
The union of the set of rational numbers and irrational numbers creates the set of Real 
Numbers.  

 
But to prove the basic number properties for a number line that includes irrational 
numbers turned out to be quite the problem. In 1872, Richard Dedekind defined cuts in the 
rational number line that exposed the holes created by irrational numbers. He then proves 
that the set of these cuts is equivalent to the set of real numbers.  

 
This extended the rational number line into the real number line in a manner that 
preserved all the properties of the rational number line. In addition, it is not only dense, it 
is continuous. It has no holes. The Real Number Line is the foundation from which all the 
rest of our math will flow. 
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One Equals Two 
Here’s a basic algebraic exercise that illustrates the issue covered in the next segment.  
 
Let a = 1, and b = 1. Then                                                                                    a = b 
We can multiply both sides of this equation by a and get                         a2 = ab 
We can subtract b2 from both sides and get                                          a2 – b2 = ab – b2 
We can factor a2 – b2 into (a + b)(a – b) on the left hand 
side of the equation and ab – b2 into b(a – b) on the 
 right side of the equation giving us                                            (a + b)(a – b) = b(a – b) 
We can multiply both sides by 1/(a – b) and get      (a + b)(a - b)/(a – b) = b(a – b)/(a – b) 
The a-b terms cancel out. So the equation simplifies to                     (a + b) = b 
Substituting 1s in for a and b we get                                                            1 + 1 = 1 or 2 = 1 
 
This happened because we divided both sides of the equation by (a – b) which equals zero. 
In this way dividing by zero is like a box of chocolates – you never know what you’re going 
to get. A closer look at the number zero will explain why. 
 
The Trouble with Zero 
It’s important to understand that division 
has a problem when it comes to the 
number 0. Suppose ‘a’ is a number not 
equal to 0. Then, for a/0 we’re asking 
what number, when multiplied by 0 will 
give us ‘a’. But no matter what number 
you multiply by 0, you will always get 0, 
never ‘a’. So a/0 has no meaning.  We say 
it is undefined.  

 
Now, if a = 0, we’re asking what number 
when multiplied by 0 would give us 0. The 
answer is any number at all because any 
number multiplied by 0 would give you 0. 
This makes 0/0 completely 
undetermined. It can be any number you 
can think of. This is what gave us the 1 
equals 2 result. 
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The problem with zero also shows up with exponents as well. For any number a and any 
positive integer n, we define a (the base) raised to the nth power (the exponent) to be the 
base multiplied by itself the number of times specified by the exponent.  

 
We see that, when we multiply two numbers with the same base, we can add the 
exponents:  

 
With that in mind, we define a negative exponent to mean one dived by the base raised to 
the positive value of the exponent:  

 
This extends the exponent arithmetic to include all integers. We see that  

 
It follows that a raised to the nth power times a raised to the –nth power will equal the 
number one:  

 
It also follows that a raised to the nth power times a raised to the –nth power will equal a 
raised to the zero power: So, in order for the arithmetic to hold, we must define a number 
multiplied by itself zero times to equal the number one – the multiplicative identity. (This 
is much like adding a number to itself zero times is equal to zero – the additive identity.) 

 
But we also know that if the base is zero, raising it to any power will always give you zero: 

 
So what if both the base and the exponent are zero? Does 00 = 1 or 00 = 0. It is said to be 
indeterminate. 
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So, when we apply math to a physical 
situation, we must always take care to 
never wind up dividing by zero. We must 
always stipulate the ranges were an 
equation is operative and where it is not. 

 
 
 
Direct Measurement 
We can now take a look at the measurement we started with. If we mark the equal 
segments on the measuring tape to be meters, we get 2 meters. If we mark the equal 
segments to be feet, we get 6 and 56/100 feet. 

    
 
Here we need to highlight a key difference between the pure mathematics and the physics 
of measuring distances. Math uses exact coordinates to give us the exact distances. But 
physical measurements always involve a level of inaccuracy. For completeness purposes, 
you will often see a distance accompanied by an estimated error magnitude. In this case, 
we would say that the distance to the pillar is 2 meters plus or minus 1 mm (or 2.19 yards 
plus or minus some fraction of an inch) depending on the accuracy of the tape measure. 
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Appendix 
 
 Multiply by Doubling and Halving 
We defined multiplication in terms of addition. This leads 
to some interesting results as well. Here’s a way to do 
multiplication using doubling, halving and adding. To 
illustrate, let’s multiply 127 by 46 the old way. First we 
multiply by 6 and then by 40. We add the two together for 
the result. 

 

127 
x 46 

              762 
       + 5080 
            5842

In this method we need two columns. Now 
pick one of the two numbers to be 
multiplied – we’ll use the 46. Put it at the 
top of the first column. Divide it in half. If it 
were an odd number, we’d subtract 1 to 
get an even number and then divide it in 
half. Continue this process until you get to 
the number 1. Now place the other 
number (127 in our example) at the top of 
the second column. Double it and double it 
again and again until you reach the row 
with the number 1 in the first column. Now 
scratch out each row that has an even 
number in the first column and add the 
remaining numbers in the second column. 
This is the product.

 
 

46 127 
23 254 
11 508 
5 1016 
2 2032 
1 4064 
 5842   

 
 
Prove (a + b) = (b + a) 
It is quite common in mathematics to use inductive reasoning for proofs of the sort where 
you’re trying to prove something is true for all numbers in an infinite set. Proving the 
communitive property for addition (a + b) = (b + a) for all counting numbers is one of 
them.  
All we have to go on are our postulates and one proven theorem. The postulates are 

• 1 is a number 
• Every number n has one and only one successor number n + 1:  
• No two different numbers have the same successor number 

• If n + 1 = m +1 then n = m. 
And the associative property of addition theorem:  

• (a + b) + c = a + (b + c)             
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The communitive property proof has two parts. In the first part, we show that  
(a + b) = (b + a) for any value of ‘a’ when ‘b’ equals 1. Our inductive assumption is that for 
some value of ‘a’ the relationship is true. We’ll show that that implies that the relationship 
is true for (a + 1). 
     (a + 1) + 1 
= (1 + a) + 1   by our inductive assumption  
= 1 + (a + 1)   by the associative property of addition 
Now we’ll show that (a + 1) = (1 + a) when a = 1. 
  (a + 1) 
= (1 + 1)   because a = 1 
= (1 + a)   because a = 1 
So it is true for a = 1 and by the first result, we know that it is true for a = 1 + 1 =2 and 
then for a = 2 + 1 = 3, etc. for all counting numbers. 
Now in part two, our inductive assumption is that (a + b) = (b + a) for some value of b. 
We’ll show that this implies that (a + (b + 1)) = ((b + 1) + a) 
     a + (b + 1)  
= (a + b) + 1                                       by the associative property 
= (b + a) + 1    by the inductive assumption 
= b + (a + 1)    by the associative property 
= b + (1 + a)    by the results of part 1: a + 1 = 1 + a 
= (b + 1) + a    by the associative property 
We’re done.  
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MIT Calculus online textbook 
https://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/instructor-
s-manual/ 

Greek letters: 
- α  β γ δ  ε ζ  η  θ ι κ  λ μ  ν  ξ  ο π  ρ σ τ υ φ  χ ψ ω  
- Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω 
 
⇒  →  ±   ʘ   ∞ ↛ ∃ ∄ ∈ ∉ ∬ ∫ ≅ ≥ ≤ ≈  ≠  ≡ √    ∛ 
 
ℝ ℤ ℚ ℕ  
R = real numbers, Z = integers, N=natural numbers, Q = rational numbers, P = irrational 
numbers. • ⊂= proper subset (not the whole thing) ⊆=subset • ∃ = there exists • ∀ = for 
every • ∈= element of • S = union (or) • T = intersection (and) • s.t.= such that • =⇒ 
implies • ⇐⇒ if and only if • P = sum • \ = set minus • ∴= therefore 
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